Contents Online
Statistics and Its Interface
Volume 14 (2021)
Number 2
Estimating equation estimators of quantile differences for one sample with length-biased and right-censored data
Pages: 183 – 195
DOI: https://dx.doi.org/10.4310/20-SII626
Authors
Abstract
This paper estimates quantile differences for one sample with length-biased and right-censored (LBRC) data. To ensure the asymptotic unbiasedness of the estimator, the estimating equation method is adopted. To improve the efficiency of the estimator, in the sense of having a lower mean squared error, the kernel-smoothed approach is employed. To make full use of the features of LBRC data, the augmented inverse probability complete case weight is investigated in detail. Moreover, the consistency and asymptotic normality of the proposed estimators are established. The numerical simulations are conducted to examine the performance of the estimators.
Keywords
quantile difference, length bias, informative censoring, estimating equation, kernel function
Xun’s work is partially supported by National Natural Science Foundation of China (11701043), Science and Technology Program of Jilin Educational Department during the “13th Five-Year” Plan Period (JJKH20191299KJ), and Scholarship from China Scholarship Council (201808220176). Wang’s work is supported by National Natural Science Foundation of China (No. 11871028, 11731015, 11571051, 11501241), Natural Science Foundation of Jilin Province (No. 20180101216JC, 20170101057JC, 20150520053JH), and Program for Changbaishan Scholars of Jilin Province (2015010). Zhou’s work is supported by the State Key Program of National Natural Science Foundation of China (71331006, 71931004), the State Key Program in the Major Research Plan of National Natural Science Foundation of China (91546202).
Received 28 July 2018
Accepted 1 July 2020
Published 22 December 2020