Contents Online
Statistics and Its Interface
Volume 13 (2020)
Number 1
Bayesian kernel adaptive grouping learning for multi-dimensional datasets
Pages: 127 – 137
DOI: https://dx.doi.org/10.4310/SII.2020.v13.n1.a11
Authors
Abstract
With the development of information technology, a large number of datasets with complex structures, such as multidimensional datasets, need to be processed and analyzed. In this paper we propose a kernel-based statistical learning algorithm, Bayesian Kernel Adaptive Grouping Learning (BKAGL), to provide an innovative solution for the classification problem of multi-dimensional datasets. BKAGL can integrate information from different dimensions adaptively. Meanwhile, we adopt the Bayesian framework which can infer the approximate posterior distributions of parameters. The utilization of grouping features can help find which groups of features have more contributions to the response. Simulation results illustrate that BKAGL outperforms some classical classification methods and the corresponding ungrouped method. The analysis of the electrocardiogram (ECG) and electroencephalography (EEG) datasets shows that BKAGL has the highest classification accuracy and provides explanatory information.
Keywords
Classifier, multi-dimensional dataset, Bayesian model, adaptiveness, kernel method
2010 Mathematics Subject Classification
62F15, 62H30
The authors were supported by RGC Competitive Earmarked Research Grants, National Basic Research Program of China (973 Program, 2015CB856004) and National Natural Science Foundation of China (11531001).
The authors contributed equally to this work.
Received 1 August 2018
Accepted 15 September 2019
Published 7 November 2019