Contents Online
Statistics and Its Interface
Volume 13 (2020)
Number 1
Bayesian longitudinal multilevel item response modeling approach for studying individual growth differences
Pages: 1 – 16
DOI: https://dx.doi.org/10.4310/SII.2020.v13.n1.a1
Authors
Abstract
A longitudinal multilevel item response model is proposed for measuring changes in individual growth over time. To estimate the model parameters, a combined Bayesian procedure is developed. The deviance information criterion (DIC) and the widely applicable information criterion (WAIC) are used to assess the competing models. The simulation results show that the combined Bayesian estimation method performs perfectly in terms of recovering model parameters under various design conditions. Finally, a longitudinal dataset about the development of achievement in mathematics illustrates the significance and implementation of the proposed procedure.
Keywords
Item response theory, Longitudinal multilevel model, Markov chain Monte Carlo, Metropolis-Hastings within Gibbs algorithm
This work was supported by the National Natural Science Foundation of China (grant number 11571069) and Natural Science Foundation of Changchun Normal University.
Received 11 July 2018
Accepted 14 June 2019
Published 7 November 2019