Contents Online
Statistics and Its Interface
Volume 6 (2013)
Number 3
Direction estimation in the single-index model with missing values
Pages: 379 – 385
DOI: https://dx.doi.org/10.4310/SII.2013.v6.n3.a8
Authors
Abstract
We cast direction estimation in the single-index model into the sufficient dimension reduction framework. Existing sufficient dimension reduction literature with missing values mainly focuses on sliced inverse regression and requires the missing at random (MAR) assumption. In this paper, we propose new methods to handle missing data based on sliced average variance estimation and directional regression. By examining different missingness schemes, we demonstrate that inverse probability weighted estimators for missing predictor are not sensitive to the MAR assumption. The fusionrefined procedures for missing response, on the other hand, may be outperformed by complete case analysis if the response is missing completely at random (MCAR).
Keywords
directional regression, missing at random, missing completely at random, sliced average variance estimation, sliced inverse regression
2010 Mathematics Subject Classification
60K35
Published 22 August 2013