Contents Online
Statistics and Its Interface
Volume 6 (2013)
Number 3
Likelihood estimate of treatment effects under selection bias
Pages: 349 – 359
DOI: https://dx.doi.org/10.4310/SII.2013.v6.n3.a5
Authors
Abstract
We consider methods for estimating the causal effects of treatment in the situation where the individuals in the treatment and the control group are self selected, i.e., the selection mechanism is not randomized. In this case, a simple comparison of treated and control outcomes will not generally yield valid estimates of casual effect. The propensity score method is frequently used for the evaluation of treatment effect. However, this method is based on some strong assumptions, which are not directly testable. In this paper, we present an alternative modelling approach to draw causal inferences by using a shared random-effect model and the computational algorithm to draw likelihood based inference with such a model. With small numerical studies and a real data analysis, we show that our approach gives not only more efficient estimates but also is less sensitive to model mis-specifications, which we consider, than existing methods.
Keywords
causal inference, likelihood, propensity score, random-effect model
2010 Mathematics Subject Classification
Primary 60K35, 62P20. Secondary 62J12.
Published 22 August 2013