Contents Online
Surveys in Differential Geometry
Volume 20 (2015)
Conserved quantities of harmonic asymptotic initial data sets
Pages: 227 – 248
DOI: https://dx.doi.org/10.4310/SDG.2015.v20.n1.a9
Authors
Abstract
In the first half of this article, we survey the new notions of quasi-local and total angular momentum and center of mass defined in [9] (P.-N. Chen, M.-T. Wang, and S.-T. Yau, Conserved quantities in general relativity: from the quasi-local level to spatial infinity), and summarize their important properties. The computation of these conserved quantities involves solving a nonlinear PDE system (the optimal isometric embedding equation), which is difficult in general. We found a large family of initial data sets on which such a calculation can be carried out effectively. These are initial data sets of harmonic asymptotics, first proposed by Corvino and Schoen. In the second half of this article, the new total angular momentum and center of mass for these initial data sets are computed explicitly.
Keywords
harmonic asymptotic initial data sets, conserved quantities, symmetry, mass, energy-momentum
2010 Mathematics Subject Classification
35Q76, 83C05, 83C30
Published 7 July 2015