Contents Online
Surveys in Differential Geometry
Volume 9 (2004)
Spectral gap, logarithmic Sobolev constant, and geometric bounds
Pages: 219 – 240
DOI: https://dx.doi.org/10.4310/SDG.2004.v9.n1.a6
Author
Abstract
We survey recent works on the connection between spectral gap and logarithmic Sobolev constants, and exponential integrability of Lipschitz functions. In particular, tools from measure concentration are used to describe bounds on the diameter of a compact Riemannian manifold and of Markov chains in terms of the first eigenvalue of the Laplacian and the logarithmic Sobolev constant. We examine similarly dimension free isoperimetric bounds using these parameters.
Published 1 January 2004