Contents Online
Pure and Applied Mathematics Quarterly
Volume 19 (2023)
Number 5
Special issue on “Subfactors and Related Topics” in memory of Vaughan Jones
Guest Editors: Dietmar Bisch, Arthur Jaffe, Yasuyuki Kawahigashi, and Zhengwei Liu
On the paving size of a subfactor
Pages: 2525 – 2536
DOI: https://dx.doi.org/10.4310/PAMQ.2023.v19.n5.a6
Author
Abstract
Given an inclusion of $\mathrm{II}_1$ factors $N \subset M$ with finite Jones index, $[M:N] \lt \infty$, we prove that for any $F \subset M$ finite and $\varepsilon \gt 0$, there exists a partition of $1$ with $r \leq \lceil 16 \varepsilon^{-2} \rceil \cdot {\lceil 4 [M:N] \varepsilon}^{-2} \rceil$ projections $p_1, \dotsc , p_r \in N$ such that ${\lVert \sum^r_{i=1} p_i xp_i - E_{N^\prime \cap M} (x) \rVert} \leq \varepsilon {\lVert x - E_{N^\prime \cap M} (x) \rVert}, \forall x \in F$ (where $\lceil \beta \rceil$ denotes the least integer $\geq \beta$). We consider a series of related invariants for $N \subset M$, generically called paving size.
The author was supported in part by NSF Grant DMS-1955812, and by the Takesaki Endowed Chair at UCLA.
Received 9 October 2022
Received revised 3 November 2022
Accepted 10 November 2022
Published 30 January 2024