Contents Online
Pure and Applied Mathematics Quarterly
Volume 13 (2017)
Number 3
Special Issue in Honor of Simon Donaldson
Guest Editors: Kefeng Liu, Richard Thomas, and Shing-Tung Yau
Explicit Gromov–Hausdorff compactifications of moduli spaces of Kähler–Einstein Fano manifolds
Pages: 477 – 515
DOI: https://dx.doi.org/10.4310/PAMQ.2017.v13.n3.a5
Authors
Abstract
We exhibit the first non-trivial concrete examples of Gromov-Hausdorff compactifications of moduli spaces of Kähler–Einstein Fano manifolds in all complex dimensions bigger than two (Fano $\mathrm{K}$-moduli spaces). We also discuss potential applications to explicit study of moduli spaces of $\mathrm{K}$-stable Fano manifolds with large anti-canonical volume. Our arguments are based on recent progress about the geometry of metric tangent cones and on related ideas about the algebro-geometric study of singularities of $\mathrm{K}$-stable Fano varieties.
Dedicated to Sir Simon Donaldson on his 60th birthday.
C.S. is partially supported by AUFF Starting Grant 24285.
S.S. is partially supported by NSF grant DMS-1405832 and an Alfred P. Sloan Fellowship.
Received 29 May 2017
Published 12 November 2018