Contents Online
Pure and Applied Mathematics Quarterly
Volume 12 (2016)
Number 4
A global pinching theorem for complete translating solitons of mean curvature flow
Pages: 603 – 619
DOI: https://dx.doi.org/10.4310/PAMQ.2016.v12.n4.a8
Authors
Abstract
In the present paper, we prove that for a smooth complete translating soliton $M^n (n \geq 3)$ with the mean curvature vector $H$ satisfying $H = V^N$ for a unit constant vector $V$ in the Euclidean space $\mathbb{R}^{n+p}$, if the trace-free second fundamental form $\mathring{A}$ satisfies $(\int_M {\lvert \mathring{A} \rvert}^n d \mu)^{1/n} \lt K(n), \int_M {\lvert \mathring{A} \rvert}^n e^{\langle V, X \rangle} d \mu \lt \infty$, where $K(n)$ is an explicit positive constant depending only on $n$, then $M$ is a linear subspace.
Keywords
rigidity theorem, translating soliton, integral curvature pinching
2010 Mathematics Subject Classification
53C42, 53C44
Research supported by the National Natural Science Foundation of China, Grant Nos. 11531012, 11371315, 11771394.
Received 30 January 2018
Published 26 July 2018