Contents Online
Mathematical Research Letters
Volume 30 (2023)
Number 5
A note on five dimensional kissing arrangements
Pages: 1609 – 1615
DOI: https://dx.doi.org/10.4310/MRL.2023.v30.n5.a13
Author
Abstract
The kissing number $\tau (d)$ is the maximum number of pairwise non-overlapping unit spheres each touching a central unit sphere in the $d$-dimensional Euclidean space. In this note we report on how we discovered a new, previously unknown arrangement of 40 unit spheres in dimension $5$. Our arrangement saturates the best known lower bound on $\tau (5)$, and refutes a ‘belief’ of Cohn–Jiao–Kumar–Torquato.
Received 19 January 2023
Accepted 20 February 2023
Published 14 May 2024