Contents Online
Mathematical Research Letters
Volume 23 (2016)
Number 3
Global normally hyperbolic invariant cylinders in Lagrangian systems
Pages: 685 – 705
DOI: https://dx.doi.org/10.4310/MRL.2016.v23.n3.a6
Authors
Abstract
In this paper, we study Tonelli Lagrangian $L \in C^r (T \, \mathbb{T}^2 , \mathbb{R})$ with $r \geq 5$. For a generic perturbation of Lagrangian $L \to L + P$ where $P \in C^r (\mathbb{T}^2 , \mathbb{R})$, we get simultaneous hyperbolicity of a family of minimal periodic orbits which share the same first homology class. Consequently, these periodic orbits make up one or more pieces of normally hyperbolic invariant cylinder in $ T \, \mathbb{T}^2$.
Published 8 July 2016