Contents Online
Mathematical Research Letters
Volume 23 (2016)
Number 3
Sharp lower bounds for Coulomb energy
Pages: 621 – 632
DOI: https://dx.doi.org/10.4310/MRL.2016.v23.n3.a2
Authors
Abstract
We prove $L_p$ lower bounds for Coulomb energy for radially symmetric functions in $\dot{H}^s (\mathbb{R}^3)$ with $\frac{1}{2} \lt s \lt \frac{3}{2}$. In case $\frac{1}{2} \lt s \leq 1$ we show that the lower bounds are sharp.
Keywords
radial symmetry, sharp emebeddings, Coulomb energy, fractional Sobolev spaces
2010 Mathematics Subject Classification
39B62, 46E35
Accepted 7 November 2015
Published 8 July 2016