Contents Online
Mathematical Research Letters
Volume 22 (2015)
Number 5
Torsion in the Lichtenbaum Chow group of arithmetic schemes
Pages: 1491 – 1507
DOI: https://dx.doi.org/10.4310/MRL.2015.v22.n5.a10
Authors
Abstract
We give an example of a smooth arithmetic scheme $\mathfrak{X} \to B$ over the spectrum of a Dedekind domain and primes $p$ with the property that the $p$-primary torsion subgroup of the Lichtenbaum Chow group $\mathrm{CH}^2_L (\mathfrak{X}) \{p \}$ has positive corank. This also implies that the unramified cohomology group $\mathrm{H}^3_{\mathrm{nr}} (\mathfrak{X}, \mathbb{Q}_p / \mathbb{Z}_p (2))$ is infinite.
Accepted 14 April 2015
Published 13 April 2016