Contents Online
Mathematical Research Letters
Volume 22 (2015)
Number 4
A lower bound for the nodal sets of Steklov eigenfunctions
Pages: 1243 – 1253
DOI: https://dx.doi.org/10.4310/MRL.2015.v22.n4.a14
Authors
Abstract
We consider the lower bound of nodal sets of Steklov eigenfunctions on smooth Riemannian manifolds with boundary—the eigenfunctions of the Dirichlet-to-Neumann map. Let $N_{\lambda}$ be its nodal set. Assume that zero is a regular value of Steklov eigenfunctions. We show that\[H^{n-1} (N_{\lambda}) \geq {C \lambda}^{\frac{3-n}{2}}\]for some positive constant C depending only on the manifold.
Keywords
nodal sets, lower bound, Dirichlet-to-Neumann map, Steklov eigenfunctions
2010 Mathematics Subject Classification
28A78, 35P15, 35R01, 58C40
Accepted 15 March 2015
Published 24 July 2015