Contents Online
Mathematical Research Letters
Volume 21 (2014)
Number 3
Two weight norm inequalities for the $g$ function
Pages: 521 – 536
DOI: https://dx.doi.org/10.4310/MRL.2014.v21.n3.a9
Authors
Abstract
Given two weights $\sigma , w$ on $\mathbb{R}^n$, the classical $g$-function satisfies the norm inequality ${\lVert g(f \sigma) \rVert}_{L^2(w)} \lesssim {\lVert f \rVert}_{L^2(\sigma)}$ if and only if the two weight Muckenhoupt $A_2$ condition holds, and a family of testing conditions holds, namely\begin{equation*}\iint_{Q(I)} (\nabla P_t (\sigma \mathbf{1}_I) (x, t))^2 \; dw \: tdt \lesssim \sigma (I)\end{equation*}uniformly over all cubes $I \subset \mathbb{R} ^n$, and $Q (I)$ is the Carleson box over $I$. A corresponding characterization for the intrinsic square function of Wilson also holds.
Keywords
two weight inequalities, square functions
2010 Mathematics Subject Classification
42B20, 42B25
Accepted 24 February 2014
Published 13 October 2014