Contents Online
Mathematical Research Letters
Volume 20 (2013)
Number 5
A universal first-order formula defining the ring of integers in a number field
Pages: 961 – 980
DOI: https://dx.doi.org/10.4310/MRL.2013.v20.n5.a12
Author
Abstract
We show that the complement of the ring of integers in a number field $K$ is Diophantine, for $f \in K[t, x_1, \dots , x_n]$. We will use global class field theory and generalize the ideas originating from Koenigsmann’s recent result giving a universal first-order formula for $\mathbb{Z}$ in $\mathbb{Q}$.
Keywords
Hilbert’s tenth problem, Diophantine set, quaternion algebra, class field theory, Artin reciprocity, Hilbert symbol
2010 Mathematics Subject Classification
Primary 11R37. Secondary 11R52, 11U05.
Published 28 April 2014