Contents Online
Mathematical Research Letters
Volume 20 (2013)
Number 4
Restricted convolution inequalities, multilinear operators and applications
Pages: 675 – 694
DOI: https://dx.doi.org/10.4310/MRL.2013.v20.n4.a6
Authors
Abstract
For functions $F,G$ on $ {\Bbb R}^{n}$, any $k$-dimensional affine subspace $H \subset {\Bbb R}^{n}$, $ 1\le k <n$, and exponents $p,q,r \ge 2$ with $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=1$, we prove the estimate\[{||(F*G)|_H||}_{L^{r}(H)} \leq {||F||}_{\Lambda^H_{2, p}({\Bbb R}^{n})} \cdot {||G||}_{\Lambda^H_{2, q}({\Bbb R}^{n})}.\]Here, the mixed norms on the right are defined in terms of the Fourier transform by\[{||F||}_{\Lambda^H_{2,p}({\Bbb R}^{n})}={\left( \int_{H^*} {\left( \int {|\widehat{F}|}^2 dH_{\xi}^{\perp} \right)}^{\frac{p}{2}} d\xi \right)}^{{1}/{p}},\]with $dH_{\xi}^{\perp}$ the $(n-k)$-dimensional Lebesgue measure on the affine subspace $H_{\xi}^{\perp}:=\xi + H^\perp$. Dually, one obtains restriction theorems for the Fourier transform on affine subspaces. We use this, and a maximal variant, to prove results for a variety of multilinear convolution operators, including $L^p$-improving bounds for measures; bilinear variants of Stein’s spherical maximal theorem; estimates for $m$-linear oscillatory integral operators; Sobolev trace inequalities; and bilinear estimates for solutions to the wave equation.
Published 13 March 2014