Mathematical Research Letters

Volume 20 (2013)

Number 3

Kählerian three-manifold groups

Pages: 521 – 525

DOI: https://dx.doi.org/10.4310/MRL.2013.v20.n3.a9

Author

D. Kotschick (Mathematisches Institut, LMU München, Germany)

Abstract

We prove that if the fundamental group of an arbitrary three-manifold—not necessarily closed, nor orientable—is a Kähler group, then it is either finite or the fundamental group of a closed orientable surface.

2010 Mathematics Subject Classification

Primary 32Q15, 57M05, 57N10. Secondary 14F35, 20F05.

Published 9 January 2014