Contents Online
Mathematical Research Letters
Volume 19 (2012)
Number 1
The Hilbert transform does not map $L^1(Mw)$ to $L^{1,\infty}(w)$
Pages: 1 – 7
DOI: https://dx.doi.org/10.4310/MRL.2012.v19.n1.a1
Authors
Abstract
We disprove the following a priori estimatefor the Hilbert transform $H$ and the Hardy–Littlewood maximaloperator $M$:\[\sup_{t>0}t w\{x\in \R:|Hf(x)|>t\}\le C\int |f(x)| Mw(x) \,dx.\]This is a sequel to paper \cite{reguera} by the first author,which shows the existence of a weight $w$ and a Haar multiplier operator for which the inequality fails.
Published 2 May 2012