Contents Online
Mathematical Research Letters
Volume 18 (2011)
Number 2
The supercritical generalized KdV equation: Global well-posedness in the energy space and below
Pages: 357 – 377
DOI: https://dx.doi.org/10.4310/MRL.2011.v18.n2.a13
Authors
Abstract
We consider the generalized Korteweg-de Vries (gKdV) equation $\partial_t u+\partial_x^3u+\mu\partial_x(u^{k+1})=0$, where $k\geq5$ is an integer number and $\mu=\pm1$. In the focusing case ($\mu=1$), we show that if the initial data $u_0$ belongs to $H^1(\R)$ and satisfies $E(u_0)^{s_k} M(u_0)^{1-s_k} <E(Q)^{s_k} M(Q)^{1-s_k}$, $E(u_0)\geq0$, and $\|\partial_x u_0\|_{L^2}^{s_k}\|u_0\|_{L^2}^{1-s_k} <\|\partial_x Q\|_{L^2}^{s_k}\|Q\|_{L^2}^{1-s_k}$, where $M(u)$ and $E(u)$ are the mass and energy, then the corresponding solution is global in $H^1(\R)$. Here, $s_k=\frac{(k-4)}{2k}$ and $Q$ is the ground state solution corresponding to the gKdV equation. In the defocusing case ($\mu=-1$), if $k$ is even, we prove that the Cauchy problem is globally well-posed in the Sobolev spaces $H^s(\mathbb{R})$, $s >\frac{4(k-1)}{5k}$.
Published 20 May 2011