Contents Online
Mathematical Research Letters
Volume 16 (2009)
Number 5
Symmetry for a Dirichlet–Neumann problem arising in water waves
Pages: 909 – 918
DOI: https://dx.doi.org/10.4310/MRL.2009.v16.n5.a13
Authors
Abstract
Given a smooth $u:\mathbb{R}^n\rightarrow\mathbb{R}$, say $u=u(y)$, we consider $\overline u=\overline u(x,y)$ to be a solution of$$ \left\{\begin{matrix}\Delta \overline u =0 & {\mbox{ for any $(x,y)\in(0,1)\times\mathbb{R}^n$,}}\\\overline u(0,y)= u(y) &{\mbox{ for any $y\in\mathbb{R}^n$,}}\\\overline u_x (1,y)=0&{\mbox{ for any $y\in\mathbb{R}^n$.}}\end{matrix}\right. $$We define the Dirichlet-Neumann operator $({\mathcal{L}} u)(y)=\overline u_x (0,y)$ and we prove a symmetry result for equations of the form $({\mathcal{L}} u)(y)=f(u(y))$. In particular, bounded, monotone solutions in $\mathbb{R}^2$ are proven to depend only on one Euclidean variable.
Published 1 January 2009