Contents Online
Mathematical Research Letters
Volume 13 (2006)
Number 6
Lipschitz harmonic capacity and Bilipschitz images of cantor sets
Pages: 865 – 884
DOI: https://dx.doi.org/10.4310/MRL.2006.v13.n6.a3
Authors
Abstract
For bilipschitz images of Cantor sets in $\Rd$ we estimate the Lipschitz harmonic capacity and prove that this capacity is invariant under bilipschitz homeomorphisms. A crucial step of the proof is an estimate of the $L^2$ norms of the Riesz tranforms on $L^2(G,p)$ where $p$ is the natural probability measure on the Cantor set $E$ and $G \subset E$ has $p(G) > 0.$
Published 1 January 2006