Contents Online
Mathematical Research Letters
Volume 13 (2006)
Number 4
The Noether inequality for smooth minimal 3-folds
Pages: 653 – 666
DOI: https://dx.doi.org/10.4310/MRL.2006.v13.n4.a13
Authors
Abstract
Let $X$ be a smooth projective minimal 3-fold of general type. We prove the sharp inequality $$K_X^3\ge \frac{2}{3}(2p_g(X)-5),$$ an analogue of the classical Noether inequality for algebraic surfaces of general type.
Published 1 January 2006