Contents Online
Mathematical Research Letters
Volume 13 (2006)
Number 3
An Endpoint $(1,\infty)$ Balian-Low Theorem
Pages: 467 – 474
DOI: https://dx.doi.org/10.4310/MRL.2006.v13.n3.a11
Authors
Abstract
It is shown that a $(1, \infty)$ version of the Balian-Low Theorem holds. If $g \in L^2(\linR),$ $\Delta_1 ({g}) < \infty$ and $\Delta_{\infty} (\widehat{g}) <\infty,$ then the Gabor system $\mathcal{G} (g,1,1)$ is not a Riesz basis for $L^2(\linR)$. Here, $\Delta_1 ({g}) = \int |t| |g(t)|^2 dt$ and $\Delta_{\infty} (\widehat{g}) = {\rm sup}_{N >0} \int |\g|^N |\widehat{g} (\g)|^2 d\g.$
Published 1 January 2006