Contents Online
Mathematical Research Letters
Volume 13 (2006)
Number 3
Decay at infinity of caloric functions within characteristic hyperplanes
Pages: 441 – 453
DOI: https://dx.doi.org/10.4310/MRL.2006.v13.n3.a8
Authors
Abstract
It is shown that a function $u$ satisfying, $|\Delta u+\partial_tu|\le M\left(|u|+|\nabla u|\right)$, $|u(x,t)|\le Me^{M|x|^2}$ in $\linR^n\times [0,T]$ and $|u(x,0)|\le C_ke^{-k|x|^2}$ in $\linR^n$ for all $k\ge 1$, must vanish identically in $\linR^n\times [0,T]$.
Published 1 January 2006