Contents Online
Mathematical Research Letters
Volume 11 (2004)
Number 4
Hilbert-Kunz Functions for Normal Rings
Pages: 539 – 546
DOI: https://dx.doi.org/10.4310/MRL.2004.v11.n4.a11
Authors
Abstract
Let $(R,\m,k)$ be an excellent, local, normal ring of characteristic $p$ with a perfect residue field and $\dim R=d$. Let $M$ be a finitely generated $R$-module. We show that there exists $\beta(M) \in$ {\normalsize$\mathbb R$} such that $\lambda(M/I^{[q]}M) = e_{HK}(M) q^d + \beta(M) q^{d-1} + O(q^{d-2})$.
Published 1 January 2004