Contents Online
Methods and Applications of Analysis
Volume 10 (2003)
Number 1
Regularity of the Minimizer for the D-Wave Ginzburg-Landau Energy
Pages: 81 – 96
DOI: https://dx.doi.org/10.4310/MAA.2003.v10.n1.a5
Authors
Abstract
We study the minimizer of the d-wave Ginzburg-Landau energy in a specific class of functions. We show that the minimizer having distinct degree-one vortices is Holder continuous. Away from vortex cores, the minimizer converges uniformly to a canonical harmonic map. For a single vortex in the vortex core, we obtain the C1/2-norm estimate of the fourfold symmetric vortex solution. Furthermore, we prove the convergence of the fourfold symmetric vortex solution under different scales of DELTA.
Published 1 January 2003