Contents Online
Journal of Symplectic Geometry
Volume 14 (2016)
Number 1
Relative quasimorphisms and stably unbounded norms on the group of symplectomorphisms of the Euclidean spaces
Pages: 297 – 304
DOI: https://dx.doi.org/10.4310/JSG.2016.v14.n1.a11
Author
Abstract
In the paper where Burago–Ivanov–Polterovich defined the notion of conjugation-invariant norms on groups, they asked whether there exists a group with stably bounded commutator length admitting stably unbounded norms. We show that the kernel of the Calabi homomorphism of the group of symplectomorphisms of the even-dimensional Euclidean space with compact support is such a group. To prove its stable unboundedness, we consider quasimorphisms relative to a conjugation-invariant norm.
Published 24 June 2016