Contents Online
Journal of Symplectic Geometry
Volume 12 (2014)
Number 2
Removal of singularities and Gromov compactness for symplectic vortices
Pages: 257 – 311
DOI: https://dx.doi.org/10.4310/JSG.2014.v12.n2.a3
Author
Abstract
We prove that the moduli space of gauge equivalence classes of symplectic vortices with uniformly bounded energy in a compact Hamiltonian manifold admits a Gromov compactification by polystable vortices. This extends results of Mundet i Riera for circle actions to the case of arbitrary compact Lie groups. Our argument relies on an a priori estimate for vortices that allows us to apply techniques used by McDuff and Salamon in their proof of Gromov compactness for pseudoholomorphic curves. As an intermediate result we prove a removable singularity theorem for symplectic vortices.
Published 13 May 2014