Contents Online
Journal of Combinatorics
Volume 3 (2012)
Number 4
Proper connection with many colors
Pages: 683 – 693
DOI: https://dx.doi.org/10.4310/JOC.2012.v3.n4.a6
Authors
Abstract
We say an edge-colored graph is properly connected if, between every pair of vertices, there exists a properly colored path. For a graph $G$, define the proper connection number $pc(G)$ to be the minimum number of colors $k$ such that there exists a $k$-coloring of $E(G)$ which is properly connected. In this work, we study conditions on $G$ which force upper bounds on $pc(G)$.
Keywords
proper edge-coloring, connectivity, proper connection, alternating paths
Published 21 February 2013