Contents Online
Homology, Homotopy and Applications
Volume 25 (2023)
Number 1
The homotopy types of $Sp(n)$-gauge groups over $\mathbb{C}P^2$
Pages: 219 – 233
DOI: https://dx.doi.org/10.4310/HHA.2023.v25.n1.a11
Author
Abstract
Let $n \gt 2$ and $\mathcal{G}_k (\mathbb{C}P^2)$ be the gauge groups of the principal $Sp(n)$-bundles over $\mathbb{C}P^2$. In this article we partially classify the homotopy types of $\mathcal{G}_k (\mathbb{C}P^2)$ by showing that if there is a homotopy equivalence $\mathcal{G}_k (\mathbb{C}P^2) \simeq \mathcal{G}_{k^\prime} (\mathbb{C}P^2)$ then $(k, 4n(2n + 1)) = (k^\prime , 4n(2n + 1))$.
Keywords
gauge group, homotopy type, symplectic group
2010 Mathematics Subject Classification
Primary 55P15. Secondary 54C35.
In memory of Professor Mohammad Ali Asadi-Golmankhaneh.
Received 19 December 2021
Received revised 22 April 2022
Accepted 28 April 2022
Published 12 April 2023