Contents Online
Homology, Homotopy and Applications
Volume 24 (2022)
Number 2
A Wells type exact sequence for non-degenerate unitary solutions of the Yang–Baxter equation
Pages: 31 – 51
DOI: https://dx.doi.org/10.4310/HHA.2022.v24.n2.a2
Authors
Abstract
Cycle sets are known to give non-degenerate unitary solutions of the Yang–Baxter equation and linear cycle sets are enriched versions of these algebraic systems. The paper explores the recently developed cohomology and extension theory for linear cycle sets. We derive a four term exact sequence relating 1-cocycles, second cohomology and certain groups of automorphisms arising from central extensions of linear cycle sets. This is an analogue of a similar exact sequence for group extensions known due to Wells. We also relate the exact sequence for linear cycle sets with that for their underlying abelian groups via the forgetful functor and also discuss generalities on dynamical 2-cocycles.
Keywords
brace, cycle set cohomology, linear cycle set, extension, group cohomology, Yang–Baxter equation
2010 Mathematics Subject Classification
Primary 16T25, 81R50. Secondary 20J05, 20N02, 57M27.
Received 3 March 2021
Received revised 12 July 2021
Accepted 12 July 2021
Published 10 August 2022