Homology, Homotopy and Applications

Volume 23 (2021)

Number 1

Linear motion planning with controlled collisions and pure planar braids

Pages: 275 – 296

DOI: https://dx.doi.org/10.4310/HHA.2021.v23.n1.a15

Authors

Jesús González (Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados del I.P.N., México City, México)

José Luis León-Medina (Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados del I.P.N., México City, México)

Christopher Roque-Márquez (Instituto de Matemáticas, Universidad Nacional Autónoma de México, Oaxaca de Juárez, Altos, México)

Abstract

We compute the Lusternik–Schnirelmann category (LS-cat) and higher topological complexity ($\operatorname{TC}_s, s \geqslant 2$) of the “no-$k$-equal” configuration space $\operatorname{Conf}^{(k)} (\mathbb{R}, n)$. With $k = 3$, this yields the LS-cat and the higher topological complexity of Khovanov’s group $\operatorname{PP}_n$ of pure planar braids on $n$ strands, which is an $\mathbb{R}$-analogue of Artin’s classical pure braid group on $n$ strands. Our methods can be used to describe optimal motion planners for $\operatorname{PP}_n$ provided $n$ is small.

Keywords

motion planning, higher topological complexity, sectional category, configuration space, controlled collision, pure planar braid

2010 Mathematics Subject Classification

55M30, 55R80, 55S40, 68T40

The second and third authors were supported by a Conacyt scholarship and a Conacyt Postdoctoral Fellowship, respectively.

Received 14 March 2020

Received revised 28 June 2020

Accepted 7 July 2020

Published 4 November 2020