Contents Online
Homology, Homotopy and Applications
Volume 22 (2020)
Number 2
Braided categorical groups and strictifying associators
Pages: 295 – 321
DOI: https://dx.doi.org/10.4310/HHA.2020.v22.n2.a19
Author
Abstract
A key invariant of a braided categorical group is its quadratic form, introduced by Joyal and Street. We show that the categorical group is braided equivalent to a simultaneously skeletal and strictly associative one if and only if the quadratic form comes from a bilinear form. This generalizes the result of Johnson–Osorno that all Picard groupoids can simultaneously be strictified and skeletalized, except that in the braided case there is a genuine obstruction.
Keywords
braided categorical group, Picard groupoid, strictification, skeletalization, associator
2010 Mathematics Subject Classification
18D10, 19D23
The author was supported by DFG GK1821 “Cohomological Methods in Geometry”.
Received 27 November 2019
Accepted 10 February 2020
Published 13 May 2020