Homology, Homotopy and Applications

Volume 12 (2010)

Number 2

Cyclic homology via derived functors

Pages: 321 – 334

DOI: https://dx.doi.org/10.4310/HHA.2010.v12.n2.a10

Authors

Guram Donadze (Department of Algebra, A. Razmadze Mathematical Institute, Tbilisi, Republic of Georgia)

Nick Inassaridze (Department of Algebra, A. Razmadze Mathematical Institute, Tbilisi, Republic of Georgia; Departamento de Matemática Aplicada I, Universidad de Vigo, Pontevedra, Spain)

Manuel Ladra (Departamento de Àlgebra, Universidad de Santiago de Compostela, Spain)

Abstract

The cyclic, periodic cyclic and negative cyclic homologies of associative algebras are fitted into the context of cotriple homology of Barr and Beck. As applications of these results, an axiomatic description of the cyclic homology theory and the Hopf type formulas in the sense of Brown-Ellis are given.

Keywords

cyclic homology, periodic cyclic homology, negative cyclic homology, cotriple derived functor

2010 Mathematics Subject Classification

16E40, 18G10, 18G50

Published 1 January 2010