Contents Online
Homology, Homotopy and Applications
Volume 5 (2003)
Number 1
Bicatégories monoïdales et extensions de $gr$-catégories
Pages: 437 – 547
DOI: https://dx.doi.org/10.4310/HHA.2003.v5.n1.a19
Author
Abstract
In this work, we study the 2-category ${\bf Ext}(\underline{\cal K},\underline{\cal G})$ of extensions of a $gr$-category $\underline{\cal K}$ by a $gr$-category $\underline{\cal G}$. Such an extension consists of a $gr$-category $\underline{\cal H}$, an essentially surjective homomorphism $p : \underline{\cal H} \longrightarrow \underline{\cal K}$ and a monoidal equivalence $q : \underline{\cal G} \longrightarrow N(p)$ where $N(p)$ is the {\it homotopy kernel} of the homomorphism $p$. The main result is a classification theorem which constructs a biequivalence between the 2-category ${\bf Ext}(\underline{\cal K},\underline{\cal G})^{op}$ and the bicategory ${\bf Bimon}(\underline{\cal K}, \underline{\bf Bieq}(\underline{\cal G}))$ of monoidal bicategory homomorphisms between $\underline{\cal K}$ and $\underline{\bf Bieq}(\underline{\cal G})$, where $\underline{\bf Bieq}(\underline{\cal G})$ is the monoidal bicategory of biequivalences of $\underline{\cal G}$ with itself.
Keywords
$gr$-category, extension, monoïdal bicategory, torsor, bitorsor, nonabelian cohomology
2010 Mathematics Subject Classification
18-02, 18D05, 18D10, 18G50
Published 1 January 2003