Contents Online
Homology, Homotopy and Applications
Volume 5 (2003)
Number 1
Weak (co)fibrations in categories of (co)fibrant objects
Pages: 345 – 386
DOI: https://dx.doi.org/10.4310/HHA.2003.v5.n1.a15
Authors
Abstract
We introduce a fibre homotopy relation for maps in a category of cofibrant objects equipped with a choice of cylinder objects. Weak fibrations are defined to be those morphisms having the weak right lifting property with respect to weak equivalences. We prove a version of Dold’s fibre homotopy equivalence theorem and give a number of examples of weak fibrations. If the category of cofibrant objects comes from a model category, we compare fibrations and weak fibrations, and we compare our fibre homotopy relation, which is defined in terms of left homotopies and cylinders, with the fibre homotopy relation defined in terms of right homotopies and path objects. We also dualize our notion of weak fibration in a category of cofibrant objects to a notion of weak cofibration in a category of fibrant objects, and give examples of these weak cofibrations. A section is devoted to the case of chain complexes in an abelian category.
Keywords
category of cofibrant objects, fibre homotopy, mapping cylinder, model category, weak fibration
2010 Mathematics Subject Classification
18Dxx, 18G55, 55Rxx
Published 1 January 2003