Contents Online
Dynamics of Partial Differential Equations
Volume 12 (2015)
Number 4
Nonnegative solutions of a fractional sub-Laplacian differential inequality on Heisenberg group
Pages: 379 – 403
DOI: https://dx.doi.org/10.4310/DPDE.2015.v12.n4.a4
Authors
Abstract
In this paper we study nonnegative solutions of\[\begin{align}(\dagger) & &{\lvert g \rvert}^{\gamma}_{\mathbb{H}^n} u^p \leq (- \Delta_{\mathbb{H}^n})^{\frac{\alpha}{2}} u \text{ on } \mathbb{H}^n \text{,}\end{align}\]where $\mathbb{H}^n$ is the Heisenberg group; ${\lvert \cdot \rvert}_{\mathbb{H}^n}$ is the homogeneous norm; $\Delta_{\mathbb{H}^n}$ is the sub-Laplacian; $(p, \alpha, \gamma) \in (1, \infty) \times (0, 2) \times [0, (p-1)Q)$; and $Q = 2n+ 2$ is the homogeneous dimension of $\mathbb{H}^n$. In particular, we prove that any nonnegative solution of $(\dagger)$ is zero if and only if $p \leq \frac{Q+\gamma}{Q-\alpha}$.
Keywords
Heisenberg group, nonnegative weak solution, fractional sub-Laplacian
2010 Mathematics Subject Classification
Primary 35R03. Secondary 35R11.
Published 10 December 2015