Contents Online
Communications in Number Theory and Physics
Volume 12 (2018)
Number 4
Motivic classes of moduli of Higgs bundles and moduli of bundles with connections
Pages: 687 – 766
DOI: https://dx.doi.org/10.4310/CNTP.2018.v12.n4.a3
Authors
Abstract
Let $X$ be a smooth projective curve over a field of characteristic zero. We calculate the motivic class of the moduli stack of semistable Higgs bundles on $X$. We also calculate the motivic class of the moduli stack of vector bundles with connections by showing that it is equal to the class of the stack of semistable Higgs bundles of the same rank and degree zero.
We follow the strategy of Mozgovoy and Schiffmann for counting Higgs bundles over finite fields. The main new ingredient is a motivic version of a theorem of Harder about Eisenstein series claiming that all vector bundles have approximately the same motivic class of Borel reductions as the degree of Borel reduction tends to $-\infty$.
Received 4 September 2017
Accepted 16 June 2018
Published 14 January 2019