Contents Online
Communications in Number Theory and Physics
Volume 12 (2018)
Number 3
Mirror symmetry for lattice polarized del Pezzo surfaces
Pages: 543 – 580
DOI: https://dx.doi.org/10.4310/CNTP.2018.v12.n3.a3
Authors
Abstract
We describe a notion of lattice polarization for rational elliptic surfaces and weak del Pezzo surfaces, and describe the complex moduli of the former and the Kähler cone of the latter. We then propose a version of mirror symmetry relating these two objects, which should be thought of as a form of Fano-LG correspondence. Finally, we relate this notion to other forms of mirror symmetry, including Dolgachev–Nikulin–Pinkham mirror symmetry for lattice polarized K3 surfaces and the Gross–Siebert program.
The first author was supported by the Natural Sciences and Engineering Research Council of Canada, the Pacific Institute for the Mathematical Sciences, and the Visiting Campobassi Professorship at the University of Maryland.
The second author was supported by the Engineering and Physical Sciences Research Council programme grant “Classification, Computation, and Construction: New Methods in Geometry”.
Received 8 November 2017
Accepted 27 March 2018
Published 25 September 2018