Contents Online
Communications in Number Theory and Physics
Volume 11 (2017)
Number 4
Properties of the extended graph permanent
Pages: 791 – 836
DOI: https://dx.doi.org/10.4310/CNTP.2017.v11.n4.a2
Author
Abstract
We create for all graphs a new invariant, an infinite sequence of residues from prime order finite fields, constructed from the permanent of a reduced incidence matrix. Motivated by a desire to better understand the Feynman period in $\phi^4$ theory, we show that this invariant is preserved by all graph operations known to preserve the period. We further establish properties of this sequence, including computation techniques and alternate interpretations as the point count of a novel polynomial.
Keywords
extended graph permanent, permanent, Feynman period
2010 Mathematics Subject Classification
Primary 05C50. Secondary 81Q30.
Received 3 January 2017
Accepted 2 June 2017
Published 29 November 2017