Contents Online
Communications in Number Theory and Physics
Volume 1 (2007)
Number 3
Moment zeta functions for toric Calabi–Yau hypersurfaces
Pages: 539 – 578
DOI: https://dx.doi.org/10.4310/CNTP.2007.v1.n3.a4
Authors
Abstract
Moment zeta functions provide a diophantineformulation for the distribution of rational points on afamily of algebraic varieties over finite fields. They also formalgebraic approximations to Dwork’s $p$-adic unit rootzeta functions. In this paper, we use $l$-adic cohomologyto calculate all the higher moment zeta functions for themirror family of the Calabi-Yau family of smooth projectivehypersurfaces over finite fields. Our main result is a completedetermination of the purity decomposition and the trivial factorsfor the moment zeta functions.
Published 1 January 2007