Communications in Mathematical Sciences

Volume 21 (2023)

Number 8

Contents

The Neumann boundary condition for the two-dimensional Lax–Wendroff scheme

Antoine Benoit and Jean-François Coulombel

pp. 2051-2082

A Cahn-Hilliard model coupled to viscoelasticity with large deformations

Abramo Agosti, Pierluigi Colli, Harald Garcke, and Elisabetta Rocca

pp. 2083-2130

Gamma convergence for the de Gennes–Cahn–Hilliard energy

Shibin Dai, Joseph Renzi, and Steven M. Wise

pp. 2131-2144

Optimal large-time behavior of the compressible Phan–Thein–Tanner model

Yin Li, Ruiying Wei, Guochun Wu, and Zheng-An Yao

pp. 2145-2167

Operator shifting for model-based policy evaluation

Xun Tang, Lexing Ying, and Yuhua Zhu

pp. 2169-2193

A low Mach two-speed relaxation scheme for the compressible Euler equations with gravity

Claudius Birke, Christophe Chalons, and Christian Klingenberg

pp. 2213-2246

Determination for the 2D incompressible Navier–Stokes equations in Lipschitz domain

Xin-Guang Yang, Meng Hu, To Fu Ma, and Jinyun Yuan

pp. 2301-2328

Fast Communications