Contents Online
Communications in Mathematical Sciences
Volume 21 (2023)
Number 6
Fokker–Planck modeling of many-agent systems in swarm manufacturing: asymptotic analysis and numerical results
Pages: 1655 – 1677
DOI: https://dx.doi.org/10.4310/CMS.2023.v21.n6.a10
Authors
Abstract
In this paper we study a novel Fokker–Planck-type model that is designed to mimic manufacturing processes through the dynamics characterizing a large set of agents. In particular, we describe a many-agent system interacting with a target domain in such a way that each agent/particle is attracted by the center of mass of the target domain with the aim to uniformly cover this zone. To this end, we first introduce a mean-field model with discontinuous flux whose large-time behavior is such that the steady state is globally continuous and uniform over a connected portion of the domain. We prove that a diffusion coefficient, guaranteeing that a given portion of mass enters in the target domain, exists and that it is unique. Furthermore, convergence to equilibrium in 1D is provided through a reformulation of the initial problem involving a nonconstant diffusion function. The extension to 2D is explored numerically by means of recently introduced structure preserving methods for Fokker–Planck equations.
Keywords
swarm robotics, swarm manufacturing, multi-agent systems, Fokker–Planck equations
2010 Mathematics Subject Classification
35Q70, 35Q84, 93C85
This work has been written within the activities of the GNFM group of INdAM (National Institute of High Mathematics). M.Z. acknowledges partial support of MUR-PRIN2020 Project No. 2020JLWP23. The research of M.Z. was partially supported by MIUR, Dipartimenti di Eccellenza Program (2018–2022), and Department of Mathematics “F. Casorati”, University of Pavia.
Received 9 June 2022
Received revised 6 December 2022
Accepted 7 December 2022
Published 22 September 2023