Contents Online
Communications in Mathematical Sciences
Volume 21 (2023)
Number 1
Kinetic model for myxobacteria with directional diffusion
Pages: 107 – 126
DOI: https://dx.doi.org/10.4310/CMS.2023.v21.n1.a5
Authors
Abstract
In this article a kinetic model for the dynamics of myxobacteria colonies on flat surfaces is investigated. The model is based on the kinetic equation for collective bacteria dynamics introduced in [S. Hittmeir, L. Kanzler, A. Manhart, C. Schmeiser, Kinet. Relat. Models, 14(1):1–24, 2021], which is based on the assumption of hard binary collisions of two different types: alignment and reversal, but extended by additional Brownian forcing in the free flight phase of single bacteria. This results in a diffusion term in velocity direction at the level of the kinetic equation, which opposes the concentrating effect of the alignment operator. A global existence and uniqueness result as well as exponential decay to uniform equilibrium is proved in the case where the diffusion is large enough compared to the total bacteria mass. Further, the question whether in a small diffusion regime nonuniform stable equilibria exist is positively answered by performing a formal bifurcation analysis, which revealed the occurrence of a pitchfork bifurcation. These results are illustrated by numerical simulations.
Keywords
myxobacteria, inelastic Boltzmann equation, hypocoercivity, entropy, bifurcation, small diffusion parameter, fixed-point, decay to equilibrium
2010 Mathematics Subject Classification
35B32, 35B40, 35Q20
This work has been supported by the Austrian Science Fund, grants no. W1245 and F65.
Received 27 September 2021
Received revised 3 March 2022
Accepted 8 April 2022
Published 27 December 2022