Contents Online
Communications in Mathematical Sciences
Volume 18 (2020)
Number 3
Constraint energy minimizing generalized multiscale finite element method for dual continuum model
Pages: 663 – 685
DOI: https://dx.doi.org/10.4310/CMS.2020.v18.n3.a4
Authors
Abstract
The dual continuum model serves as a powerful tool in the modeling of subsurface applications. It allows a systematic coupling of various components of the solutions. The system is of multiscale nature as it involves high heterogeneous and high contrast coefficients. To numerically compute the solutions, some types of reduced order methods are necessary. We will develop and analyze a novel multiscale method based on the recent advances in multiscale finite element methods. Our method will compute multiple local multiscale basis functions per coarse region. The idea is based on some local spectral problems, which are important to identify high contrast channels, and an energy minimization principle. Using these concepts, we show that the basis functions are localized, even in the presence of high contrast long channels and fractures. In addition, we show that the convergence of the method depends only on the coarse mesh size. Finally, we present several numerical tests to show the performance.
Keywords
fractured porous media, dual continuum model, multiscale method, model reduction
2010 Mathematics Subject Classification
65M12, 65M60
The second-named author’s work is partially supported by Hong Kong RGC General Research Fund (Project 14304217) and CUHK Direct Grant for Research 2017-18.
The third-named author’s work was partially supported by NSF grants 1620318 and 1934904, and by a mega-grant of the Russian Federation Government (N 14.Y26.31.0013).
The fifth-named author’s work was supported by a mega-grant of the Russian Federation Government (N 14.Y26.31.0013).
Received 28 July 2018
Accepted 18 November 2019
Published 30 June 2020