Contents Online
Communications in Mathematical Sciences
Volume 17 (2019)
Number 7
Singularity formation for a fluid mechanics model with nonlocal velocity
Pages: 1779 – 1794
DOI: https://dx.doi.org/10.4310/CMS.2019.v17.n7.a2
Author
Abstract
We study a 1D fluid mechanics model with nonlocal velocity. The equation can be viewed as a fractional porous medium flow, a 1D model of quasi-geostrophic equation, and also a special case of the Euler alignment system. For strictly positive smooth initial data, global regularity has been proved in [Do, Kiselev, Ryzhik and Tan, Arch. Ration. Mech. Anal., 228(1):1–37, 2018]. We construct a family of non-negative smooth initial data so that solution is not $C^1$-uniformly bounded. Our result indicates that strict positivity is a critical condition to ensure global regularity of the system. We also extend our construction to the corresponding models in multi-dimensions.
Keywords
porous medium flow, quasi-geostrophic equations, the Euler alignment equation, singularity formation
2010 Mathematics Subject Classification
35Q35, 35Q92
Copyright © 2019 by Changhui Tan.
This work is supported by NSF grant DMS 1853001.
Received 30 August 2017
Accepted 27 March 2019
Published 6 January 2020