Contents Online
Communications in Mathematical Sciences
Volume 17 (2019)
Number 5
Dedicated to the memory of Professor David Shen Ou Cai
Asymptotic-preserving schemes for two-species binary collisional kinetic system with disparate masses, I: time discretization and asymptotic analysis
Pages: 1257 – 1289
DOI: https://dx.doi.org/10.4310/CMS.2019.v17.n5.a5
Authors
Abstract
We develop efficient asymptotic-preserving time discretization schemes to solve the disparate mass kinetic system of a binary gas or plasma in the “relaxation time scale” relevant to the epochal relaxation phenomenon. Since the resulting model is associated to a parameter given by the square of the mass ratio between the light and heavy particles, we develop an asymptotic-preserving scheme in a novel decomposition strategy using the penalization method for multiscale collisional kinetic equations. Both the Boltzmann and Fokker–Planck–Landau (FPL) binary collision operators will be considered. Other than utilizing several AP strategies for single-species binary kinetic equations, we also introduce a novel splitting and a carefully designed explicit-implicit approximation, which are guided by the asymptotic analysis of the system. We also conduct asymptotic-preserving analysis for the time discretization, for both space homogenous and inhomogeneous systems.
Keywords
two-species kinetic system, disparate mass, epochal relaxation, asymptotic-preserving method
2010 Mathematics Subject Classification
35Q20, 65M99, 82D10
The first and third authors were supported by funding from the DOE–Simulation Center for Runaway Electron Avoidance and Mitigation. The second author was supported by NSF grants DMS-1522184 and DMS-1107291: RNMS KI-Net and NSFC grant No. 31571071.
Received 25 October 2018
Accepted 4 May 2019
Published 6 December 2019