Contents Online
Communications in Mathematical Sciences
Volume 16 (2018)
Number 8
A quadratic spline least squares method for computing absolutely continuous invariant measures
Pages: 2077 – 2093
DOI: https://dx.doi.org/10.4310/CMS.2018.v16.n8.a2
Authors
Abstract
We develop a quadratic spline approximation method for the computation of absolutely continuous invariant measures of one dimensional mappings, based on the orthogonal projection of $L^2$ spaces. We prove the norm convergence of the numerical scheme and present the numerical experiments.
Keywords
Frobenius–Perron operators, invariant measures, least squares approximations, spline functions
2010 Mathematics Subject Classification
37M25, 65J10, 65P20
The work of D. Zhou was supported by the National Natural Science Foundation of China (Nos. 11861008, 11501126, 61502107, 11661007, 11661008, 61863001); the research fund of Gannan Normal University (No. 18zb04); the key disciplines coordinate innovation projects of Gannan Normal University; and the Support of the Development for Local Colleges and Universities Foundation of China - Applied Mathematics Innovative Team Building.
The work of G. Chen was supported by the National Natural Science Foundation of China (No. 11471122).
The work of J. Ding was supported by the 111 Project and the Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice.
Received 6 December 2017
Accepted 13 August 2018
Published 18 April 2019